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Abstract 

Introduction: Cognitive failures during driving are a significant contributor to traffic accidents and fatalities. 

This study investigates neurophysiological markers of cognitive failure in drivers using electroencephalography 

(EEG). 

Methods: Thirty taxi drivers were classified into high and low cognitive failure groups based on CFQ scores. 

EEG signals were recorded during eyes-closed rest and eyes-open Go/No-Go tasks to assess brainwave patterns 

and lobe-specific activation. Statistical analyses included t-tests, repeated measures ANOVA, and Pearson 

correlations. 

Results: Drivers with high cognitive failure showed reduced delta, theta, and gamma activity—particularly in the 

temporal and occipital lobes—suggesting impaired cognitive processing. In contrast, low-failure drivers exhibited 

increased delta, theta, and alpha power in frontal and occipital regions. Elevated beta activity in the parietal lobe 

of high-failure drivers may reflect compensatory processing. Gamma power was consistently lower across all 

brain regions in this group. 

Conclusion: These results highlight specific EEG frequency bands as potential objective markers for identifying 

cognitive failure in drivers, offering implications for early cognitive assessment and the development of evidence-

based safety strategies in driving contexts. 

Keywords: Cognitive Performance, Automobile Driving, Electroencephalography, Brain Waves. 
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Highlights 

• EEG can objectively identify cognitive failures in professional drivers, even when behavioral 

tasks show no differences. 

• Drivers with high cognitive failure scores show reduced theta and gamma power, especially in 

temporal and occipital lobes. 

• Gamma-band power differences between high and low cognitive failure groups reflect distinct 

patterns of neural activation during cognitive tasks. 

• Parietal beta power is associated with faster response times and may indicate compensatory 

processes in drivers prone to cognitive errors. 

• Combining EEG with behavioral measures reveals latent cognitive vulnerabilities in drivers that 

may not be captured by performance alone. 

Plain Language Summary 

Driving safely requires paying attention, remembering important details, and making quick decisions. 

Sometimes drivers experience “cognitive failures” — like forgetting, getting distracted, or making small 

mistakes. This study used brain wave (EEG) recordings from taxi drivers to search for objective signs 

of these cognitive failures. Thirty drivers were tested with a simple attention task while their brain 

activity was measured. Drivers with more self-reported cognitive failures did not make more mistakes 

on the task, but their brain patterns were different: they showed less brainwave power in certain 

frequencies (especially gamma and theta bands) and had different activation in areas of the brain linked 

to attention and memory. These findings suggest that EEG can detect hidden (latent) thinking problems 

in drivers, even when their task performance seems normal. Using EEG as a tool could help spot risks 

early and improve road safety for everyone. 
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1. Introduction 

In recent years, driving safety has emerged as a paramount concern (Saha et al., 2017). Traffic accidents 

in urban areas have exhibited alarming trends. For instance, the total number of roadway fatalities in 

the United States reached 42,939 in 2021, a significant 14% increase compared to the preceding year. 

Pedestrians and other vulnerable road users have also faced elevated risks in these environments, 

contributing to an increase in urban traffic-related fatalities (Administration, 2023). 

Driving is a complex cognitive task that involves various processes, including attention, perception, 

decision-making, and visuomotor integration (Vilchez et al., 2024). Failures in these skills can lead to 

errors and accidents, which can have severe consequences, particularly in professions that require high 

levels of attention and concentration, such as driving. In general, cognitive failure in drivers refers to 

the psychological obstacles that impede their ability to process traffic conditions and engage in the 

motor planning necessary for driving (Saha et al., 2017). Urban drivers may be more susceptible to 

these cognitive errors due to the specific demands of their jobs, which include navigating heavy traffic 

and the need to focus and react quickly to road conditions (Kazemi et al., 2017). Recent studies have 

demonstrated that drowsiness, fatigue, distraction, and speeding remain major factors that undermine a 

driver's ability to perceive hazards, recognize critical situations, and maintain proper control over the 

vehicle, often resulting in serious road accidents (Merlhiot & Bueno, 2022). 

Investigations into cognitive failures across various occupations underscore their significance 

(Abbasi et al., 2021; Kazemi et al., 2017; Mortazavi et al., 2022). Research demonstrates that cognitive 

errors are a primary contributor to traffic accidents and are associated with increased rates of driving 

mistakes, lapses, and violations (Allahyari et al., 2008). Cognitive failures, characterized as errors in 

simple tasks resulting from memory, attention, or action issues, have substantially impacted driving 

safety and accident rates (Wickens et al., 2008). 

In this context, research has investigated electroencephalography (EEG) to assess cognitive 

performance in driving, focusing on visual alertness, motor planning, and motor execution (Saha et al., 

2017). EEG is a non-invasive, portable, safe, and cost-effective technology that is widely accepted and 

requires relatively short data acquisition times. This technique examines brain activity by recording 
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electrical brain waves, thereby facilitating the investigation of cognitive and neurological alterations. It 

is a valuable tool for understanding cognitive performance and monitoring mental states. Numerous 

studies have shown that different brain frequency bands, including delta, theta, alpha, beta, and gamma 

waves, can provide valuable insights into an individual's cognitive state and brain function (Liu et al., 

2023; Peng et al., 2022; Ronca, Brambati, et al., 2024). Recent EEG-based studies have demonstrated 

the effectiveness of neurophysiological indices—such as theta and alpha band activity—in detecting 

drivers’ cognitive failures, mental workload, and drowsiness, both in real-world and simulated driving 

scenarios, highlighting the potential of brain-monitoring systems to improve road safety (Di Flumeri et 

al., 2018; Di Flumeri et al., 2022; Ronca, Brambati, et al., 2024; Saha et al., 2017). 

In a study involving non-professional drivers undergoing a simulated driving task until the onset of 

fatigue, the results indicated an increase in slow wave activity across the cortical regions, particularly 

in the theta and alpha frequency bands. No significant changes were observed in delta wave activity. 

However, fast wave activity, notably in the frontal regions, increased. This finding suggests that as 

fatigue progresses, the brain compensates by enhancing beta activity to maintain attention and vigilance, 

highlighting the importance of EEG in assessing cognitive load and performance (Craig et al., 2012). 

Liu et al. (Liu et al., 2023) conducted an EEG-based analysis to investigate drivers' cognitive workload 

during an on-road experiment. Their findings indicated that delta waves had a minimal impact, with 

activity primarily localized in the temporal lobe, suggesting a connection to memory processes. Theta 

waves increased in response to higher cognitive demands, particularly in the frontal and temporal 

regions associated with reasoning and judgment. Alpha waves demonstrated significant activation in 

the occipital and temporal areas under increased workloads, highlighting their role in visual processing. 

Beta waves were strongly associated with psychological functions and visual processing, with 

heightened activity observed in the frontal and occipital lobes during intense cognitive tasks. This study 

emphasizes the direct influence of cognitive workload on driving performance and safety. 

In a study conducted by Li (Li et al., 2023), driving was performed under conditions designed to 

induce cognitive distraction and increase mental load. The results indicated that a task primarily 

engaging the driver's auditory working memory had a more significant impact on changes in brain 
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activity than a task mainly involving the driver's visuo-spatial working memory, which entailed 

relatively less mental load. 

The study conducted by Ronca (Ronca, Brambati, et al., 2024) involved participants driving in two 

distinct settings: urban and highway environments. During these scenarios, the participants were 

assigned various secondary tasks in addition to the primary driving task to modulate their level of 

attention. The findings indicated that the EEG-based distraction index was highly effective in detecting 

variations in driver distraction between the urban and non-urban scenarios, revealing a significantly 

higher level of distraction in the urban setting. This outcome is likely attributable to the drivers 

managing multiple distractions inherent to the urban environment, such as pedestrians, crossing 

vehicles, traffic signals, and other elements that are naturally part of the urban driving experience. 

Given the significance of cognitive failure as a primary factor in execution errors and driving 

accidents, assessing and examining this type of failure is crucial. Cognitive failures have been 

predominantly evaluated using self-report tools, such as the CFQ, which has gained popularity among 

researchers due to its simplicity and convenience. However, fewer studies have directly investigated 

the relationship between cognitive failures and EEG indicators, leaving the associated brainwave 

changes relatively unexplored. Since EEG is a non-invasive and precise tool for assessing cognitive 

functions and various mental states, its employment for detecting cognitive failures can provide an 

objective and reliable method. This approach can highlight specific patterns of brain activity associated 

with these failures. In this study, we aim to bridge this gap by comparing individuals with high levels 

of cognitive failure to those with low or negligible levels, examining EEG indices to explore potential 

connections between cognitive failures and brainwave activity. 

So, the present study investigated the changes and differences in brain activity, as measured by EEG, 

between the Cognitive Failure (CF) and Non-Cognitive Failure (NCF) groups. The study aimed to 

address the following research questions: 

1. Is there a significant difference in the cognitive performance of drivers from the CF and NCF 

groups while completing a Go/No-Go (GNG) cognitive task? 

2. Are there significant differences in the brainwave frequencies (delta, theta, alpha, beta, gamma) 

of drivers between the CF and NCF groups? 
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3. Are there significant differences in the activity of various brain lobes (frontal, parietal, 

temporal, occipital, central) between drivers in the CF and NCF groups? 

4. Which brainwave frequency and brain lobe exhibit the most significant changes due to 

cognitive failure? 

 

2. Materials and Methods 

Participants 

In this experimental study, 30 drivers with a mean age of 36.52 years (SD = 4.88, age range: 29 to 45 

years) and a mean experience of 7.70 ± 2.68 years were recruited from urban taxi drivers. Based on the 

total scores of the CFQ, participants who scored 41 or above were assigned to the CF group (n = 20), 

while those who received scores below 41 were assigned to the NCF group (n = 10). 

The inclusion criteria for participation in this study are as follows: 1) Drivers employed by city taxi 

companies must be within the age range of 20 to 50 years and have a minimum of 2 years of work 

experience; 2) Participants must not have any dependency on narcotics or substances that impact the 

nervous system, psyche, or emotional state; 3) Participants are required to be in good physical health 

and mental well-being (no diagnosis of cardiovascular and cerebrovascular diseases, somatic diseases, 

mental diseases, malignant tumors, or other primary health conditions); 4) They were all right-handed; 

5) Only male drivers were included in the research group (as female drivers were underrepresented in 

the population); and 6) Participants were required to be sufficiently alert at the time of testing. To ensure 

this, the Karolinska Sleepiness Scale (KSS) was administered prior to EEG recording, and only 

individuals scoring three or lower were included in the study. This assessment ensured that EEG 

readings were not influenced by participants' sleepiness or fatigue levels  (Manaenkov et al., 2023). 

Individuals were excluded from the study if they demonstrated a lack of cooperation in answering 

questions or if their questionnaires contained missing items or logical errors. 

Procedures 

All experimental sessions were conducted at a privacy clinic coordinated with a certified medical 

professional. Upon arrival, participants received a detailed verbal explanation of the study objectives 
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and procedures. Before initiating the study, participants signed informed consent forms, acknowledging 

their voluntary participation and understanding that their data would be strictly confidential and used 

solely for scientific purposes. The Ethical Committee of Shiraz University of Medical Sciences 

approved all experimental procedures. Before initiating the study, participants' alertness was assessed 

using the KSS. Participants were instructed to obtain sufficient sleep the night before the experiment 

and to refrain from consuming caffeinated beverages, smoking, or using any medications or stimulants 

for at least 12 hours before the session. Additionally, all experimental sessions were conducted at the 

same time window, between 9:00 AM and 2:00 PM, to minimise circadian variation. 

To ensure familiarity with the experimental tasks, participants were first introduced to the GNG task 

and allowed to complete a short practice session. Following this, EEG preparation was carried out 

according to the international 10–20 system. A suitable EEG cap was selected based on head size and 

properly positioned on the participant's scalp. After injecting conductive gel into the electrodes to ensure 

optimal signal quality, a soft elastic net was placed over the EEG cap to help secure the electrodes, 

maintain stable contact and reduce signal noise throughout the recording session, ensuring accurate 

brainwave measurements. Participants were asked to minimise speaking and to refrain from moving 

their head or body to reduce muscle and motion artifacts. 

EEG data were recorded under two conditions. First, a two-minute resting-state session was 

conducted with participants sitting quietly with closed eyes. Next, EEG signals were recorded while 

participants performed the GNG task, which took approximately 5 to 7 minutes, depending on the 

participants' task completion speed. The experimenter monitored data quality throughout the session, 

and any necessary adjustments were made in real-time to ensure accurate signal acquisition. 

Upon completion of the recordings and confirmation of acceptable data quality, the EEG equipment 

was removed, and participants were thanked for their cooperation before leaving the clinic. Each session 

lasted approximately 30 to 40 minutes, including setup, task performance, and equipment removal. 

Figure 1 provides a schematic representation of the study protocol. 
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Figure 1. Overall experimental procedures. 

 CFQ  

The CFQ, developed by Broadbent, consists of 25 items targeting four domains: memory, nominal 

memory, attention, and exercise. This questionnaire considers different aspects of cognition, cognitive 

characteristics, various theories of cognitive failures, and aspects and layers where cognitive failures 

occur (Broadbent et al., 1982). 

A study by Rast et al. (Rast et al., 2009) indicates that the CFQ items load on three different factors: 

- Forgetfulness: "a tendency to let go from one's mind something known or planned, for example, 

names, intentions, appointments, and words". 

- Distractibility: "mainly in social situations or interactions with other people such as being 

absentminded or easily disturbed in one's focused attention". 

- False Triggering: "interrupted processing of sequences of cognitive and motor actions". 

In a reliability study by Allahyari et al. (Allahyari et al., 2008) conducted in an industrial setting, the 

CFQ demonstrated high reliability, with a Cronbach’s alpha of 0.96, reflecting excellent internal 

consistency. 

The CFQ score ranges from 0 to 100, where higher scores indicate more frequent cognitive failures. 

Categories based on CFQ scores are as follows: 
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- Low Cognitive Failure: 25–41 

- Moderate Cognitive Failure: 41–82 

- High Cognitive Failure: Scores above 82. 

Cognitive Task  

The CF and NCF groups performed the GNG computer task while their EEG was recorded 

simultaneously. The GNG task is designed to assess the ability to inhibit motor responses (Karthaus et 

al., 2020). It has been widely utilized in neuroimaging studies to evaluate inhibitory control and 

sustained attention—critical for safe driving. While it does not entirely mirror the complexities of real-

world driving, it offers a controlled framework for assessing cognitive control. Its relevance to driving 

research is supported by studies such as Hatfield et al. (Hatfield et al., 2017), who used EEG with a 

GNG task in simulated driving to decode actions like braking, underscoring its neural validity. 

Additionally, the task has effectively modelled driver fatigue, distraction, and risky decision-making 

behaviors (Ba et al., 2016), making it a practical tool when immersive simulations are not feasible. 

Thus, its utility in exploring neurophysiological markers of cognitive functions is well-supported, 

providing valuable insights when used with techniques like EEG. 

The GNG task is a computerized task that consists of a large number of trials. During the task, a 

series of "Go" and "No-Go" stimuli are presented to a subject, who is required to respond as quickly as 

possible to a "Go" stimulus but refrain from responding to the "No-Go" stimulus. Repeated 

presentations of the “Go” stimulus create a prepotent motivation to respond during the trials, making 

inhibition of this prepotent response during “No-Go” stimuli challenging (Nguyen et al., 2021; Van 

Royen et al., 2022). 

In the present study, the GNG task consisted of 120 trials. Each trial lasted 1000 ms, followed by an 

inter-stimulus interval (ISI) of 1500 ms. In each trial, the visual stimulus (i.e., the colored rectangles) 

was presented on the screen for 1000 ms. During this time, participants were expected to respond if the 

trial was a Go condition. Thus, the stimulus duration and the response window were concurrent. During 

the task, pairs of rectangles with the colors "white and green" and "white and red" appeared randomly 

on the screen (Figure 2. a & b). If one of the pairs of rectangles included a red color, participants were 

instructed to withhold their response. However, if one of the pairs included a green color, the response 
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depended on the position of the green rectangle. Specifically, if the green rectangle was on the right and 

the white rectangle was on the left, participants must press the "?" button as quickly as possible. 

Conversely, if the white rectangle was on the right and the green rectangle was on the left, participants 

were instructed to press the "Z" button at maximum speed. All participants used a fixed response 

mapping (i.e., "Z" for left-side green stimuli and "?" for right-side green stimuli). Response 

counterbalancing was not applied since all participants were right-handed, and the response keys were 

spatially balanced. This approach reduced variability and maintained consistency across trials. In other 

experimental contexts, however, counterbalancing response mappings may be beneficial to control for 

potential lateralized response tendencies. 

During the GNG task, several performance metrics were recorded, including omission errors, 

commission errors, and response times. 

An omission error occurs when a participant fails to respond to a target stimulus (Go trial). This can 

be defined as when the participant does not press the "?" or "Z" button when one of the pairs of 

rectangles includes a green color, indicating a Go trial. 

A commission error is recorded when a participant responds to a non-target stimulus (No-Go trial). 

This happens when the participant presses the "?" or "Z" button in response to a pair of rectangles that 

includes a red color, indicating a No-Go trial. 

Response time is measured as the interval between the pair of rectangles on the screen and the 

participant's response by pressing the "?" or "Z" button. This metric reflects the speed at which the 

participant reacts to the target stimuli (Khodadadi & Amani, 2014). 

EEG Data collection and processing 

EEG data were recorded using a bio-amplifier system manufactured by Medicom MTD Ltd. The data 

were stored and processed with Encephalan-EEGR 121 software from Medicom MTD Ltd. A standard 

10/20 linked ears reference montage EEG system was employed, with individuals grounded 

peripherally. The reference electrodes were placed at A1 and A2, and the ground electrode was 

positioned at FZ. 
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Brain frequency activity was recorded from 19 channels in different lobes, as detailed in Table 1 and 

Figure 3. An EEG cap was used in conjunction with a cleaning gel for the head surface and a connecting 

gel for the active electrodes to record the signals. 

The data were analysed using Python's Magnetoencephalography and Electroencephalography 

(MNE) package. To remove Alternating Current (AC) power supply noise, notch filters were applied 

at 50 Hz and 100 Hz. The data were then band-pass filtered between 0.1 and 50 Hz. To address ocular 

artifacts (e.g., blinks and eye movements), Electrooculography (EOG) channels were recorded 

simultaneously with EEG. Independent Component Analysis (ICA) was performed to identify and 

remove components correlated with EOG activity based on their time course and scalp topography. 

This ICA-based EOG correction approach is considered the gold standard for multi-channel EEG with 

EOG recordings, ensuring effective artifact removal while preserving neural signals (Ronca, Di 

Flumeri, et al., 2024). After artifact correction, spectral power density was computed for five frequency 

bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–49.5 Hz). 

The channels were grouped into five areas of interest (AOIs): frontal, central, parietal, occipital, and 

temporal (Figure 3). The absolute power for each AOI was calculated by averaging the channels within 

each region in both eyes-closed resting-state and GNG task conditions (Figure 2.b & c). 

 

Figure 2. Experimental protocol; (a) Illustration of the Go/ No-Go task interface used in the study (b) The EEG 

recording during the performance of the GNG task (eyes open condition); Rectangles with colors "white and 

green" and "white and red" appeared randomly on the screen. If one rectangle was red, no response was needed. 

If one rectangle was green, the participant had to press the "?" or "Z" button according to whether the green 

rectangle was on the left or right side (c) The EEG recording during the resting condition (eyes closed). 
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Statistical analysis 

Behavioral data were analyzed using independent samples t-tests to compare the CF and NCF groups 

on questionnaire and GNG task measures, following verification of homogeneity of variances using 

Levene’s test. EEG spectral power values were analyzed using separate mixed-design repeated-

measures ANOVAs for each frequency band (Delta, Theta, Alpha, Beta, Gamma). Each ANOVA 

included Condition (Eyes-Closed Resting vs. GNG Task) and AOI (Frontal, Central, Parietal, 

Temporal, Occipital) as within-subject factors, and Group (CF vs. NCF) as a between-subject factor. 

Mauchly’s test was used to assess the sphericity assumption, and Greenhouse–Geisser corrections were 

applied where necessary. To control for Type I error in post hoc comparisons between AOIs within 

each frequency band, Bonferroni correction was applied via SPSS. All reported post hoc p-values are 

Bonferroni-adjusted, and statistical significance was evaluated using α = 0.05. Main effects and 

interactions not involving multiple comparisons were assessed using the conventional threshold. 

Pearson correlation analyses were conducted to explore associations between EEG spectral power and 

behavioral task performance (reaction time, omission errors, commission errors). These analyses were 

exploratory and not corrected for multiple comparisons. Accordingly, the results are interpreted with 

caution and intended to inform future hypothesis-driven research. All analyses were conducted using 

IBM SPSS Statistics Version 22. 

Table 1. Electrode position distribution. 

 

 

 

 

 

 

 

 

 

 

Location Electrode name 

Left Right Central 

Prefrontal Lobe Fp1 Fp2 - 

Inferior Lobe F7 F8 - 

Frontal Lobe F3 F4 Fz 

Central Lobe C3 C4 Cz 

Temporal Lobe T3 T4 - 

Posterior Lobe T5 T6 - 

Parietal Lobe P3 P4 Pz 

Occipital Lobe O1 O2 - 

Auricular A1 A2 - 
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Figure 3. Electrode placement and functional categorization of EEG channels. Electrodes were grouped into five 

anatomically and functionally defined AOIs: Frontal (Monitor channel; F7, F3, Fz, F4, F8, Fp1, Fp1), Central 

(Sensorimotor channel; Cz, C3, C4), Parietal (Perception channel; P3, Pz, P4), Occipital (Visual channel; O1, O2), 

and Temporal (Auditory channel; T3, T4, T5, T6). 

 

3. Results 

CFQ Scores 

The CF group reported significantly higher scores than the NCF group on the total CFQ and its 

subscales, including Forgetfulness, Distractibility, and False Triggering (all ps < 0.01). 

GNG Task Performance 

In contrast, there were no significant differences between the groups in any behavioral performance 

measures on the GNG task (commission errors, omission errors, response inhibition, or response time). 

Detailed descriptive statistics and p-values are provided in Table 2. 
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Table 2. CFQ scores and GNG Task scores of CF and NCF groups. 

 

NCF group 

(n = 10) 

CF group 

(n = 20) PValue 

Mean (SD) Mean (SD) 

CFQ 

Domain 

CFQ total 35.70 (4.11) 53.40 (3.84) 0.000* 

Forgetfulness 17.50 (3.10) 26.46 (2.31) 0.000* 

Distractibility 13.20 (2.39) 19.86 (4.98) 0.000* 

False Triggering 5.10 (1.20) 7.46 (1.68) 0.002* 

GNG Task 

Indicator 

Commission Errors 0.70 (0.82) 1.77 (4.62) 0.480 

Omission Errors 0.00 0.07 (0.28) 0.393 

Inhibition Scores 119.3 (0.82) 118.15 (4.60) 0.447 

Response Times (ms) 453 (92.37) 449.15 (83.63) 0.918 

Note. *p < 0.05; CFQ, Cognitive Failure Questionnaire; SD, standard deviation. 

 

Descriptive Analysis of EEG Spectral Power Across Brain Areas and Experimental Conditions 

To provide a general overview of the EEG spectral power distribution, Table 3 presents the mean (± 

SD) values for each frequency band (delta, theta, alpha, beta, gamma) across five brain regions, for both 

CF and NCF groups during the resting-state and GNG task conditions. These descriptive statistics are 

provided for reference purposes only and are not subjected to inferential statistical tests. 
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Table 3. Mean absolute power in delta, theta, alpha, beta and gamma bands. 

 

NCF group (n = 10) 

Mean (SD) 

CF group (n = 20) 

Mean (SD) 

Condition AOIs delta theta alpha beta gamma delta theta alpha beta gamma 

 

 

resting 

conditions 

(eyes 

closed) 

Frontal 

3.72 

(2.50) 

2.86 

(1.51) 

3.95 

(3.71) 

3.20 

(2.18) 

3.32 

(2.40) 

3.15 

(2.73) 

3.90 

(2.90) 

3.52 

(2.41) 

2.81 

(2.67) 

3.70 

(2.27) 

Central 

4.90 

(3.61) 

2.93 

(1.52) 

4.53 

(2.98) 

4.12 

(2.29) 

3.01 

(2.00) 

4.54 

(3.4) 

4.17 

(2.76) 

2.97 

(2.11) 

3.66 

(2.63) 

3.58 

(2.45) 

Parietal 

4.80 

(2.72) 

4.16 

(2.41) 

4.25 

(2.56) 

3.90 

(2.09) 

4.25 

(2.07) 

5.25 

(3.09) 

4.50 

(2.61) 

4.42 

(2.40) 

3.80 

(2.73) 

4.43 

(2.47) 

Occipital 

2.64 

(1.83) 

4.25 

(2.81) 

3.34 

(1.56) 

2.63 

(1.60) 

5.37 

(2.91) 

4.80 

(2.03) 

4.14 

(2.00) 

5.58 

(2.83) 

3.49 

(2.28) 

5.14 

(2.72) 

Temporal 

3.80 

(1.72) 

2.21 

(2.42) 

4.70 

(2.71) 

3.14 

(1.09) 

3.83 

(2.26) 

4.28 

(2.04) 

3.64 

(2.08) 

3.21 

(2.50) 

4.38 

(3.46) 

4.60 

(2.57) 

 

 

 

GNG task 

(eyes 

open) 

Frontal 

4.36 

(2.8) 

5.07 

(3.45) 

5.31 

(3.32) 

2.36 

(2.02) 

4.91 

(2.90) 

5.02 

(3.07) 

4.06 

(2.94) 

6.29 

(2.74) 

3.04 

(2.56) 

3.15 

(1.67) 

Central 

3.23 

(3.03) 

5.87 

(2.50) 

5.28 

(3.14) 

3.11 

(1.67) 

3.83 

(2.38) 

3.71 

(2.63) 

5.40 

(2.20) 

4.52 

(2.41) 

3.80 

(2.36) 

3.23 

(1.56) 

Parietal 

3.70 

(3.30) 

3.39 

(2.06) 

4.86 

(2.74) 

4.45 

(2.54) 

4.31 

(2.13) 

2.68 

(1.84) 

3.91 

(1.77) 

3.38 

(2.47) 

3.67 

(2.48) 

3.02 

(2.31) 

Occipital 

4.87 

(2.34) 

2.86 

(1.51) 

6.15 

(1.28) 

3.56 

(2.25) 

4.06 

(2.18) 

3.51 

(2.67) 

3.71 

(1.54) 

4.70 

(2.28) 

4.21 

(2.94) 

2.14 

(1.02) 

Temporal 

4.17 

(1.71) 

3.97 

(0.83) 

3.16 

(1.19) 

3.22 

(2.64) 

4.83 

(2.90) 

4.11 

(1.91) 

1.92 

(0.64) 

3.56 

(1.72) 

3.35 

(2.11) 

3.97 

(2.89) 

 

EEG Activity by Frequency Band: Effects of Condition, Region, and Group 

Delta Band 

The repeated measures ANOVA revealed no significant main effect of AOI (F (4, 112) = 1.95, p = .11, 

η² = .07), Condition (F (1, 28) = 1.64, p = .21, η² = .06), or Group (F (1, 28) = 0.12, p = .73, η² = .004). 
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No significant interactions were observed, including AOI × Condition (F(4, 112) = 1.55, p = .19, η² = 

.05), AOI × Group (F(4, 112) = 1.83, p = .13, η² = .06), Condition × Group (F(1, 28) = 2.68, p = .11, η² 

= .09), or AOI × Condition × Group (F(4, 112) = 1.13, p = .35, η² = .04). These results suggest that 

delta power remained stable across regions, conditions, and groups. 

Theta Band 

For theta power, a significant main effect of Condition was observed (F (1, 28) = 7.91, p = .009, η² = 

.22), with higher power during the eyes-closed condition. The AOI × Condition interaction was also 

significant (F (4, 112) = 3.66, p = .008, η² = .12), indicating region-specific modulation. A significant 

Condition × Group interaction was found (F (1, 28) = 6.73, p = .015, η² = .19), suggesting that controls 

exhibited more pronounced condition-related modulation than the CF group. The main effects of AOI 

and Group were not significant, nor were the AOI × Group or three-way interactions (all ps > 0.05). 

Alpha Band 

A significant main effect of AOI emerged (F (4, 112) = 14.55, p < .001, η² = .34), with alpha power 

highest in occipital and parietal regions. A strong main effect of Condition was also detected (F (1, 28) 

= 37.98, p < .001, η² = .58), with increased alpha activity during eyes-closed. The AOI × Condition 

interaction was significant (F (4, 112) = 4.03, p = .004, η² = .13), indicating that the task-related 

reduction in alpha power was more prominent in posterior regions. No significant effects involving 

Group were found (all ps > .05). 

Beta Band 

Analysis of beta power showed no significant main effects of AOI (F (4, 112) = 2.37, p = .057, η² = 

.08), Condition (F (1, 28) = 1.12, p = .30, η² = .04), or Group (F (1, 28) = 0.01, p = .91, η² < .001). 

Similarly, all interaction terms were non-significant, including AOI × Condition (F (4, 112) = 1.88, p 

= .12), AOI × Group (F (4, 112) = 1.46, p = .22), and AOI × Condition × Group (F (4, 112) = 0.88, p = 

.48). These findings indicate that beta power remained largely unchanged across regions, conditions, 

and groups. 
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Gamma Band 

Gamma band analysis revealed a significant main effect of AOI (F (4, 112) = 5.14, p = .001, η² = .16), 

with highest power in the parietal and central regions. Although no main effect of Condition was 

observed (F (1, 28) = 1.64, p = .21, η² = .06), the AOI × Condition interaction was significant (F (4, 

112) = 5.82, p = .002, η² = .17), reflecting region-specific changes across task states. Specifically, 

gamma power increased in temporal areas during the GNG task but decreased in occipital and frontal 

regions. A significant AOI × Group interaction was also found (F (4, 112) = 4.15, p = .004, η² = .13), 

indicating distinct topographical gamma patterns between CF and control groups, with the control group 

exhibiting relatively greater anterior gamma activation (Figure 4). No significant three-way interaction 

(AOI × Condition × Group) was detected (F (4, 112) = 1.13, p = .35, η² = .04). 

 

Figure 4. Comparison of mean absolute power for frequency bands in groups. The CF group exhibited a significantly lower 

gamma power than the NCF group (error bar: standard error, *p < .05). 

 

Correlation analyses explored associations between EEG absolute power and behavioral performance 

measures. Table 4 summarizes the significant correlations observed. Notably, omission errors were 

positively correlated with occipital alpha power (r = 0.414, p = 0.050) and temporal delta power (r = 

0.446, p = 0.033). Significant negative associations were found between response times and parietal 

delta power (r = -0.486, p = 0.019) and parietal beta power (r = -0.473, p = 0.023). 
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Table 4. Significant correlations between EEG absolute power and GNG Task Indicator 

  

GNG Task Indicator 

Response Time Omission Errors Commission Errors 

r (Pearson) p-value r (Pearson) p-value r (Pearson) p-value 

Frontal 

Delta 0.142 0.515 -0.022 0.919 -0.231 0.289 

Theta 0.017 0.940 -0.228 0.295 0.346 0.106 

Alpha -0.015 0.947 0.41 0.853 0.175 0.424 

Beta -0.192 0.381 -0.158 0.470 -0.148 0.500 

Gamma -0.344 0.108 -0.145 0.510 0.094 0.671 

Parietal 

Delta -0.486* 0.019 0.258 0.234 -0.191 0.382 

Theta 0.122 0.580 -0.130 0.553 -0.015 0.945 

Alpha -0.130 0.583 -0.232 0.271 0.135 0.540 

Beta -0.473* 0.023 -0.205 0.347 0.056 0.801 

Gamma -0.197 0.368 -0.158 0.473 -0.201 0.357 

Temporal 

Delta 0.147 0.504 0.446* 0.033 0.161 0.462 

Theta 0.154 0.484 -0.121 0.583 -0.017 0.939 

Alpha -0.046 0.834 -0.334 0.119 -0.157 0.475 

Beta 0.204 0.351 -0.144 0.513 0.166 0.449 

Gamma 0.017 0.937 -0.144 0.512 -0.223 0.207 

Central 

Delta -0.090 0.682 -0.128 0.561 -0.202 0.356 

Theta -0.089 0.686 0.412 0.061 -0.076 0.730 

Alpha -0.298 0.168 -0.058 0.793 0.107 0.626 

Beta -0.164 0.454 -.017 0.940 0.258 0.234 

Gamma -0.384 0.103 0.123 0.576 -0.228 0.296 

Occipital 

Delta 0.306 0.155 -0.195 0.374 0.044 0.843 

Theta 0.022 0.919 0.340 0.112 -0.113 0.608 

Alpha -0.152 0.488 0.414* 0.050 -0.193 0.378 

Beta 0.155 0.481 -.197 0.367 0.071 0.746 

Gamma -0.042 0.849 -0.81 0.714 -0.082 0.714 

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed). 
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4. Discussion 

The present study aimed to explore the differences in brain activity and cognitive performance between 

drivers with high cognitive failure and those without. Specifically, the research focused on identifying 

significant differences in cognitive performance during a GNG task, variations in brainwave 

frequencies (Delta, Theta, Alpha, Beta, Gamma), and activity across five brain lobes (Frontal, Central, 

Parietal, Temporal, Occipital) between the two groups. Additionally, the study aimed to pinpoint which 

brainwave frequency and brain lobe exhibited the most notable changes due to cognitive failure.  

The CF group demonstrated significantly higher scores on the CFQ than the NCF group (p < 0.05). 

However, no statistically significant differences were found between the CF and NCF groups regarding 

commission errors, omission errors, inhibitory control, or response times during the GNG task (p > 

0.05). EEG data during the GNG task showed that the NCF group tended to exhibit higher delta, theta, 

and alpha power in some regions (notably frontal and occipital), although these group-level differences 

were not statistically significant. Only gamma power showed a significant topographical difference 

between groups. Therefore, trends in other bands should be interpreted cautiously as preliminary and 

descriptive rather than conclusive. ANOVA results revealed significant differences in delta and gamma 

power under different eye conditions, with the NCF group consistently showing higher gamma activity, 

which could be associated with stronger cognitive control. EEG thus proved effective in distinguishing 

cognitive function between groups. 

The significantly higher CFQ scores in the CF group validate the group classification, indicating greater 

vulnerability to attentional lapses and executive dysfunction. Studies have linked self-reported cognitive 

failures with real-world driving risks. Kazemi et al. (Kazemi et al., 2017) found that increased mental 

workload in taxi drivers was associated with more frequent cognitive lapses. Similarly, Choi et al. (Choi 

& Feng, 2018) reported associations between attentional failures and prior traffic violations in older 

drivers. Niranjan et al. (Niranjan et al., 2022) showed that cognitive failures mediate the effect of 

personality traits on distracted driving. These findings underscore the predictive value of CFQ scores 

in assessing cognitive risk factors relevant to driving safety. 
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Although no significant behavioral differences were found between the groups during the GNG task, 

EEG results—particularly in the gamma band—highlighted neurophysiological distinctions. This 

discrepancy may indicate that EEG is more sensitive than behavioral tasks in capturing subtle neural 

changes related to cognitive control and attention. Individuals with higher cognitive failure may recruit 

additional brain resources to maintain comparable task performance, reflecting compensatory 

processes. These findings emphasize the importance of integrating EEG data with behavioral measures 

to detect latent cognitive differences that may not yet manifest behaviorally. 

However, in this study, no significant differences were observed between CF and NCF groups in 

commission errors, omission errors, inhibition, or response time during the GNG task. Research has 

shown a significant link between poor GNG task performance and increased risk-taking in driving, 

especially among young drivers, with higher commission errors associated with behaviors like speeding 

and unsafe reactions (Ba et al., 2016; Van Royen et al., 2022). This lack of behavioral distinction may 

suggest that the task's sensitivity is limited in capturing the broader cognitive failures identified by the 

CFQ. Alternative methods, such as continuous performance tasks or naturalistic driving simulations, 

offer greater ecological validity by better reflecting real-world attentional and executive challenges. 

Balancing experimental control with ecological realism remains an important direction for future 

research. 

Despite the absence of behavioral differences, EEG analyses revealed some neurophysiological 

variation between groups, particularly in gamma power, which showed a statistically significant AOI × 

Group interaction. Although patterns were observed in theta, alpha, and beta bands, these did not reach 

significance and are best viewed as preliminary trends. This suggests that EEG may detect subtle neural 

modulations that are not yet behaviorally expressed, but interpretations should be restrained to effects 

supported by statistical evidence. Previous studies have reported that electrophysiological measures can 

capture latent inefficiencies or compensatory neural activity, especially in low-demand or overlearned 

tasks. For example, Di Flumeri et al. (Di Flumeri et al., 2022) showed that EEG-based indices like the 

MDrow index can detect early signs of driver drowsiness without overt behavioral cues, highlighting 

EEG's sensitivity to latent cognitive states. Likewise, Di Flumeri et al. (Di Flumeri et al., 2018) used an 

EEG workload metric to reveal fluctuations caused by traffic and road complexity that behavioral 
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measures missed. Saha et al. (Saha et al., 2017) also developed a two-stage EEG classifier that identified 

cognitive failures during simulated driving, even without motor responses. These findings underscore 

the value of EEG as a complementary tool to behavioral assessments, capable of identifying subclinical 

cognitive vulnerabilities that remain undetected through performance metrics alone. 

In the eyes-open condition of the GNG task, the CF group exhibited higher delta wave power. When 

comparing delta activity across different states, a shift is observed: while parietal lobe activity is 

enhanced during eyes-closed rest, cognitive task engagement leads to increased activity in the frontal 

and temporal lobes and a gradual reduction in the parietal region. This relationship was further 

supported by a significant negative correlation between parietal delta power and response time, 

suggesting that stronger delta activity in this region may facilitate faster motor responses during 

cognitive engagement. These dynamics align with findings by Liu et al. (Liu et al., 2023), who reported 

that moderate cognitive load enhances frontal lobe activation. However, as task difficulty increases, 

activity in both frontal and temporal regions rises slightly while parietal activation diminishes. Given 

the temporal lobe's role in auditory processing and memory, these results indicate a potential association 

between delta wave activity and memory-related cognitive processes. 

Consistent with prior research indicating that theta wave dynamics vary with driving workload (Liu et 

al., 2023), our findings showed elevated theta activity in the NCF group during the GNG task—

particularly in the frontal, temporal, and central regions—relative to the resting state. In contrast, the 

CF group exhibited increased theta power only in the frontal and central areas. Given the frontal lobe's 

attention and executive control involvement, this localized increase may reflect greater cognitive effort. 

However, during the task, the CF group demonstrated a notable reduction in theta power across all brain 

regions—especially in the temporal lobe—compared to the NCF group. Since the temporal lobe plays 

a key role in memory and learning, this reduction may indicate compromised neurocognitive processing 

in individuals with higher cognitive failure. 

Prior research underscores that theta wave distribution varies significantly across brain regions 

depending on driving conditions and cognitive load. For instance, Li (Li et al., 2023) and Liu (Liu et 

al., 2023) observed that theta activity rises in the frontal and temporal lobes as cognitive demands 
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increase. In contrast, parietal activity weakens—suggesting a functional redistribution of neural 

resources during task engagement.  

Similarly, Lin et al. (Lin et al., 2011) found that solving cognitively demanding tasks enhances frontal 

theta and beta power, potentially reflecting increased mental load and susceptibility to distraction. 

Additionally, Diaz-Piedra et al. (Diaz-Piedra et al., 2020) reported that the frontal, temporal, and 

occipital areas' theta EEG power spectrum was higher during the most complex driving scenarios. 

Conversely, Savage et al. (Savage et al., 2013) reported decreased frontal and occipital theta activity 

under high workload conditions. However, eye-movement artefacts may confound their findings, 

highlighting the need for methodological rigor in EEG research. 

Alpha waves, commonly dominant during rest, typically increase in response to cognitive demands. In 

this study, the NCF group showed enhanced alpha activity in both the occipital and frontal regions 

during the GNG task compared to the eyes-closed condition. In contrast, the CF group exhibited 

increased alpha only in the frontal region and reduced occipital alpha power. Given the occipital lobe’s 

role in visual processing and behavioral monitoring, this pattern could potentially reflect reduced 

efficiency in visual-cognitive integration among individuals with cognitive failure. 

Previous research has shown that alpha activity tends to increase in the occipital region as cognitive 

workload intensifies and decreases in the frontal region. This may indicate a shift in resource allocation 

toward visual processing under cognitive strain (Liu et al., 2023). Thus, the reduced occipital alpha in 

the CF group may reflect deficits in visual attention and executive function, consistent with findings 

linking decreased alpha power in occipital regions to impaired visual monitoring and slower cognitive 

processing (Arif et al., 2021; Ghojazadeh et al., 2024). 

Beta waves, commonly linked to alertness, sustained attention, and complex information processing, 

generally increase during cognitively demanding tasks. Prior studies have demonstrated that distractions 

elevate frontal beta activity, while deeper cognitive load enhances beta power in the occipital lobe and 

reduces it in the parietal area (Liu et al., 2023). However, the CF group showed no significant frontal 

beta activity change in our study, while an increase in parietal beta activity was observed. 

The parietal lobe integrates sensory inputs, spatial attention, and executive functions such as planning, 

decision-making, and attentional control. Some studies have reported decreased parietal beta activity 
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under cognitive overload [16], but our results point to a different pattern. The observed increase in 

parietal beta activity in the CF group may be related to compensatory cognitive processes, particularly 

given its significant correlation with faster response times. However, as this interpretation is based on 

correlational data and not on a formal mediation analysis, it should be regarded as a preliminary 

hypothesis that warrants further testing (Moessinger et al., 2021; Palmiero et al., 2019). 

This interpretation is supported by prior research showing that parietal beta oscillations can increase 

with heightened task effort and may represent compensatory activation during cognitively demanding 

conditions (Daneshi et al., 2020). Nonetheless, due to inconsistencies in the literature—where beta 

activity is linked to cognitive engagement and mental overload—we present this interpretation 

cautiously and recommend further investigation into beta dynamics across varying task complexities. 

Additionally, the NCF group exhibited enhanced beta activity in the occipital lobe during the cognitive 

task, highlighting beta’s relevance to visual attention and reinforcing its role in task-related visual 

processing. 

Gamma waves are believed to play a key role in neural synchronization and inter-regional brain 

communication, especially during cognitively demanding tasks (Leicht et al., 2021). The systematic 

review by Ghojazadeh et al. (Ghojazadeh et al., 2024) highlights that decreased gamma wave activity 

in central and temporal brain regions may be a biological marker for detecting fatigue and drowsiness 

in drivers. However, due to variability in findings across studies, EEG data should be used to identify 

driver fatigue and drowsiness with caution and careful interpretation. Furthermore, Leicht et al. (Leicht 

et al., 2021) demonstrated that gamma-band synchronisation significantly increases between frontal and 

temporal brain regions during cognitively demanding auditory tasks, reflecting enhanced neural 

communication and top-down control mechanisms. This supports the notion that gamma oscillations 

facilitate inter-regional coordination necessary for complex cognitive processing, which may be 

disrupted in conditions such as driver fatigue. 

Although gamma reductions were observed in the CF group, and prior literature links gamma activity 

to cognitive integration, our data did not reveal a significant correlation between gamma power and 

behavioral outcomes in the GNG task. As such, these findings may suggest—but do not confirm—a 

disruption in cognitive efficiency. 



 

26 
 

Although theta and alpha wave patterns differed descriptively across groups, these differences were not 

statistically significant. Therefore, while such patterns may suggest differential cognitive processing, 

the present findings do not support robust conclusions regarding their diagnostic utility in distinguishing 

between CF and NCF groups. A marked reduction in temporal lobe theta activity in the CF group during 

the GNG task suggests compromised memory and learning functions—capacities that are essential for 

managing complex driving situations. While both groups exhibited increased frontal theta activity 

during the task, the relatively lower engagement in the CF group may indicate diminished attentional 

control and reduced efficiency in cognitive processing under task-related demands. 

Limitations and Further Work 

Several limitations should be acknowledged when interpreting the findings of this study. 

Gender is an important factor influencing EEG patterns during cognitive tasks, and several studies have 

reported significant sex-related differences. In the present study, only male taxi drivers were included 

due to the demographic structure of the study region, where female drivers are virtually absent. As a 

result, the findings may not be generalizable to female populations, and future studies should address 

this limitation by including gender-diverse samples. 

The GNG task is a well-established tool for assessing neurophysiological correlates of cognitive 

functions—particularly inhibitory control and attention—but it does not fully capture the complexity of 

real-world driving. Future studies should consider complementing it with driving simulators or more 

realistic driving scenarios to enhance ecological validity. 

Variables such as education, cognitive workload outside driving, and lifestyle factors were not 

controlled and may influence EEG patterns. Including these as covariates in future models would 

improve interpretive clarity. 

As the study focused exclusively on urban drivers, its findings may not extend to individuals operating 

in non-urban or highway environments, where driving demands differ markedly. Replicating this 

research in varied driving contexts would help clarify how cognitive failures manifest across road types. 

The current analysis did not include traditional event-related potentials (ERPs), as the EEG system and 

software used (Encephalan-EEGR 121, Medicom MTD Ltd) were primarily optimised for spectral 

analysis rather than ERP extraction. While spectral power measures provided insights into frequency-
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specific neural activity associated with cognitive failure, future studies employing ERP-based systems 

could complement these findings by elucidating the temporal dynamics of inhibitory control. 

Due to the limited sample size (n = 30) and the unequal group distribution (20 participants in the CF 

group and 10 in the NCF group), the statistical power of the analyses may be constrained. Therefore, 

interpreting statistical results—particularly findings with marginal differences—should be cautiously 

approached. The use of larger and more balanced samples is recommended for future studies. 

5. Conclusions 

The absence of significant behavioral differences between CF and NCF groups in the GNG task 

suggests that while this task effectively measures basic inhibitory control, it may lack the sensitivity to 

detect more subtle cognitive deficits associated with higher CFQ scores. Future research would benefit 

from incorporating cognitively demanding tasks—such as sustained attention or dual-task paradigms—

to better assess real-world cognitive performance. 

Among all frequency bands examined, gamma power emerged as the most consistent neural marker 

distinguishing CF and NCF participants, with a significant group-related topographical difference. 

While descriptive differences were observed in delta, theta, alpha, and beta bands across regions and 

conditions, these did not reach statistical significance and should be interpreted as preliminary patterns. 

This suggests that EEG, particularly gamma-band activity, may offer sensitive indices of underlying 

cognitive differences not captured by overt behavior. However, further research with larger samples 

and task complexity is necessary to validate these trends and clarify their relevance for real-world 

cognitive performance. 

Altogether, these results underscore the value of EEG in revealing cognitive dysfunctions that may not 

be evident through behavioral measures alone, supporting its application in future efforts to enhance 

driver assessment and safety strategies. 
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